Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study.

نویسندگان

  • Chaogan Yan
  • Gaolang Gong
  • Jinhui Wang
  • Deyi Wang
  • Dongqiang Liu
  • Chaozhe Zhu
  • Zhang J Chen
  • Alan Evans
  • Yufeng Zang
  • Yong He
چکیده

The anatomical connectivity of the human cerebral cortex resembles a "small-world" architecture, which is characterized by the coexistence of structurally segregated and integrative connectivity patterns. However, organizational differences in networks among individuals remain largely unknown. Here, we utilize diffusion tensor imaging tractography and graph-theoretical approaches to investigate the effects of sex and brain size on the topological organization of human cortical anatomical network. Weighted cortical networks were constructed from 72 young healthy participants by measuring anatomical connection densities between 78 cortical regions. As expected, all participants showed a small-world topology (high local clustering and short paths between nodes), which suggests a highly efficient topological organization. Furthermore, we found that females had greater local efficiencies than males. Moreover, smaller brains showed higher local efficiency in females but not in males, suggesting an interaction between sex and brain size. Specifically, we show that several brain regions (e.g., the precuneus, precentral gyrus, and lingual gyrus) had significant associations between nodal centrality and sex or brain size. Our findings suggest that anatomical network organization in the human brain is associated with sex and brain size and provide insights into the understanding of the structural substrates that underlie individual differences in behavior and cognition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods to Improve Fiber Reconstruction at DTI-Based Tractography in the Area of Brain Tumor: Case Illustration and Literature Review

Background and Aim: DTI-based tractography could help us to visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The aim of the current study is to discuss several solutions to improve the procedure of fiber reconstruction adjacent or inside brain lesions. Illustrative cases...

متن کامل

Structural network analysis of brain development in young preterm neonates

Preterm infants develop differently than those born at term and are at higher risk of brain pathology. Thus, an understanding of their development is of particular importance. Diffusion tensor imaging (DTI) of preterm infants offers a window into brain development at a very early age, an age at which that development is not yet fully understood. Recent works have used DTI to analyze structural ...

متن کامل

Diffusion Tensor Imaging Tractography Reveals Disrupted White Matter Structural Connectivity Network in Healthy Adults with Insomnia Symptoms

Neuroimaging studies have revealed that insomnia is characterized by aberrant neuronal connectivity in specific brain regions, but the topological disruptions in the white matter (WM) structural connectivity networks remain largely unknown in insomnia. The current study uses diffusion tensor imaging (DTI) tractography to construct the WM structural networks and graph theory analysis to detect a...

متن کامل

Validation of DTI Tractography-Based Measures of Primary Motor Area Connectivity in the Squirrel Monkey Brain

Diffusion tensor imaging (DTI) tractography provides noninvasive measures of structural cortico-cortical connectivity of the brain. However, the agreement between DTI-tractography-based measures and histological 'ground truth' has not been quantified. In this study, we reconstructed the 3D density distribution maps (DDM) of fibers labeled with an anatomical tracer, biotinylated dextran amine (B...

متن کامل

Structural Network Topology Revealed by White Matter Tractography in Cannabis Users: A Graph Theoretical Analysis

Endocannabinoid receptors modulate synaptic plasticity in the brain and may therefore impact cortical connectivity not only during development but also in response to substance abuse in later life. Such alterations may not be evident in volumetric measures utilized in brain imaging, but could affect the local and global organization of brain networks. To test this hypothesis, we used a novel co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2011